This website requires certain cookies to work and uses other cookies to help you have the best experience. By visiting this website, certain cookies have already been set, which you may delete and block. By closing this message or continuing to use our site, you agree to the use of cookies. Visit our updated privacy and cookie policy to learn more.
This Website Uses Cookies By closing this message or continuing to use our site, you agree to our cookie policy. Learn MoreThis website requires certain cookies to work and uses other cookies to help you have the best experience. By visiting this website, certain cookies have already been set, which you may delete and block. By closing this message or continuing to use our site, you agree to the use of cookies. Visit our updated privacy and cookie policy to learn more.
Traditionally, a complex manufacturing machine has one large, powerful controller that governs sequencing, motion and I/O. Multiple drives and motors are connected to the controller via a motion network. The controller itself can be linked to a human-machine interface, a PC, or both. It might also be connected to a manufacturing execution system or an enterprise resource planning system.
This approach is not the easiest system to optimize, but it does have its advantages, particularly if the application requires synchronized motion between multiple axes. Such applications include six-axis robots, injection molding machines, milling machines and water-jet cutting machines.