

Pitfalls and Approaches for Project Integrations with Multiple Technology Classes

Charlie Shortridge Charlie.Shortridge@invioautomation.com

AUTOMATION

Goals for the day

KEY TOPICS TO COVER INCLUDE:

2 How do these projects unfold, in practice?

) Lessons learned from an Integrator

Please ask questions at any time during our discussion

Presentation Timing = 40 min Length of prepared content = \sim 25 min

3

Invio is your partner for what's possible

We design, implement, & sustain automation for the largest operations in the world

Building the Factory of the Future The landscape of factory automation extends across the production floor and up the industrial technology stack

The Challenge

Automation is increasingly a strategic imperative – how can we best ensure success?

"We need to increase our annual volumes by 3x in the next 3 years, but we can't find labor"

"This area of our facility is notorious for us to retain our workers, how can we improve it?"

"Our company is starting an Industry 4.0 transformation – where's the most 'bang for our buck'?"

"We have a project and we need the new system to tie-in seamlessly with all of our current systems"

"We're launching a new product, and want to incorporate best practices in Design for Assembly"

Best Practices

What are the best teams doing to implement complex automation projects?

Collaboration

Cross-Functional Representation

Identify and define problems, collaboratively

Include Design, Operations, Quality, and IT Partnership Mentality

Engage suppliers and technology partners throughout

Take the long-term view

Identify & Mitigate Risks Early

Pre-fund Discovery Engineering and Feasibility Testing

Utilize Simulation to test hypothesis

Develop a common language on how to identify opportunity, evaluate proposals, and approach projects

Develop a common language on how to identify opportunity, evaluate proposals, and approach projects

The 'Process Walk Worksheet' provides a structured way to identify high-ROI potential projects:

- The Automation Best Practices have been reframed in the affirmative as yes / no questions
- Score each area: more "yes" answers = a more desirable operation to revisit

INVIO

AUTOMATION

Process Walk Worksheet

Norkshop:	41766
Date:	1/11/2023
Name:	

Question 1: Is the activity in the top quartile of time consumption?

Question 2: Is the process commonality (truck to truck and model to model) in the top quartile?

Question 3: Are inbound pieces well organized?

- Question 4: Are there steps *absent* of work feeding, threading, and connecting harnesses, cables, and hoses?
- Question 5: Is it possible to segregate steps (e.g., move offline) within the station and/or provide a safe space for new equipment to operate?
- Question 6: Is this a major operator pain point and/or does an idea for improvement already exist?

DESC	Production Facility Description	Oper Desc	Q1	Q2	Q3	Q4	Q5	Q6	
	AXLE SUB	AXLE SUB STA 1							
	AXLE SUB	TOUCHUP PAINT AREAS							
	AXLE SUB	VERIFY AXLE OIL							
	AXLE SUB	INST FR LUG PLATES							
C B	AXLE SUB	INST RR LUG PLATES							
ЦЦ	AXLE SUB	HOSE FRONT AXLE							
¥¥	AXLE SUB	HOSE REAR AXLE							
	AXLE SUB	OPT: DRAIN AXLE OIL							
	AXLE SUB	OPT: ADD ARTIC OIL							

Develop a common language on how to identify opportunity, evaluate proposals, and approach projects

Develop a common language on how to identify opportunity, evaluate proposals, and approach projects

Safety

Variation

Floor Space

Scoring Matrix

After identifying a portfolio of projects, how do we start to prioritize where to focus?

How do we ensure vendor RFQs are solving the key pain points?

Project # Opportunity Name

1

2

3

4

IR												
A	UTOMATION											
Projec	t Ranking Criter	ia										
Workshop	33824.01											
Date:	10/17/2023											
Name:												
%Weight	Ranking Criteria		Description									
15%	Safety		Does the prop	osed reduce	risk? Enhance	ergonomics?) (1 = significa	nt improveme	ent, 5 = limite	d improveme	nt, same as ex	isting)
10%	Variation		Degree of par	t-to-part or N	Nodel-to-Mod	el variability (1 = limited va	ariation, 5= hig	gher degree o	f variation)		
10%	Floor Space Availability		Degree of floo	or space requ	ired and/or av	ailability of s	pace in this ar	rea (1 = no cor	icern, 5 = higł	ner concern)		
10%	Complexity		Degree of alig	nment betwe	een what the i	deal automat	ed-stated is v	s. what is like	y feasible			
3%	Substructure		Degree of inte	rconnection	to existing sys	stems, degree	of retrofits o	r upgrades to	other system	s required		
20%	Cycle Time		Assume lowe	r score is fast	ter/better tha	n existing, hig	her score is as	s good or neut	ral.			
15%	ROI		What is the q	ualitative ass	sumption of a	chieving a favo	orable ROI (ba	ised on what i	s known now)? 1 = higher l	ikelihood	
10%	Quality		Degree to wh	ch automati	on allows for i	n-process ins	pection or ide	ntification of	defects			
3%	Hard-to-Fill Positions		Are these jobs notoriously difficult to staff? Is it a frequent area no one likes to spend their day?									
5%	Flexibility / Scalability		To what exter	nt can the pro	oposed project	t be expanded	l upon, or sca	led over time	if models cha	nge?		
100%												
		Instructions										
		Score from 1-	5 for each pro	ject across a	ll criteria "1'	' = BEST, "5" =	WORST / MO	OST DIFFICULT	Lower Com	posite Score =	better projec	t

Complexity Sub-Structure Cycle Time

Hard-to-Fill

Quality

ROI

Scalability COMPOSITE SCORE

Case Studies: End-of-line Robotic Glass Unload

Collaborative Design Workshop to Define a Future State

Project Overview

Customer required a robotic handling solution to load glass racks at end of line

Project Highlights

- Quality inspection of panels at conveyor outlet provided sortation inputs
- Vision-based inspection to determine panel position on conveyor
- EOAT design for compatibility with protective coating applied to the panels upstream
- Addition of intra-layer packaging materials to protect glass during transit out of the facility

Outcomes

- Invio developed a dual-robot concept utilizing robotic transfer units to enable loading of racks in different zones (1 working, 1 replenishing)
- Integration of conveyor system logic with new robotic automation to include sortation / routing based on visioninspection output

Case studies: Hybrid & Lights-Out Systems

High-Speed Assembly Automation

Fully 'lights out' production may not make sense right away, how can we split work content and establish phases of automation?

Case Studies: Workshop → Concept → Prove ROI Transitioning Manual Ops to Automated Assembly

The workshop team developed a "big board" of potential ideas Customer X future-state is enabled by multiple sub-systems and consists of a mix of autonomous & operator-led stations and actions...

- 1 Re-imagined layout to improve material flows
- 2 Automated frame build up w/ automated glass lay
- 3 Automated doors build up w/ automated glass lay
- 4 "600s" build fixture (AGV compatible)
- 5 Pick-to-light for kit building
- 6 Laser Marking of nameplates
- Elumatec machine tending and transfer
- 8 End-of-line ergo-lift device to remove frame from build fixture
- 9 Automated caulking
- 10 Robot on mobile platform for machine / press-brake tending
- 11 AGVs for cart transfers
- 12 Cobot kit building
- 13 Electronics area re-configuration for improved ergonomics
- (14) Ergo-lift device for glass installation
- INVIO

Case Studies: Value Stream Map → Simulation → Implementation

General Assembly Environments

Automation projects, in practice

Avoiding Pitfalls

RFQ Quality is Key

Poor quality RFQs have multiple downsides:

- Longer vendor evaluation period and lengthier Q&A exchanges (more emails & review meetings)
- Misunderstandings, scope growth, and/or ECOs

Best-in-class RFQs include:

- Clearly defined sequence of operations
- CAD (3D) smallest part, largest part, & highest runner
- Area layout dwgs

Take the 'horizontal view'

"Horizontal View" refers to following the flow through the lens of an Operator's field of vision

- Forces team to think through critical system interfaces
- Where does the automation have dependencies elsewhere?

Involve cross-functional groups early

- Prioritize gathering feedback from many viewpoints; include Operators and IT
- Host workshop with vendor partners on-site to begin Design Phase or kick-off major projects

Spend early to save later

- Recognize there is an information asymmetry in the marketplace → who holds the risk?
- Buyer-Seller collaboration can significantly reduce overall project scope → this typically leads to more efficient outcomes for the buyer

In summary

KEY TAKEWAYS

2) How do these projects unfold, in practice?

) Lessons learned from an Integrator

Cross-functional collaboration, partnership with vendor / integrator early, "spend now to save later"

Create a methodical approach to identifying and prioritizing opportunities to further deploy automation

Great RFQs can pay dividends. Prioritize a high degree of collaboration, both internally and externally

All materials are available to share, please say hello after our session

Charlie Shortridge Sales Engineering Manager Charlie.Shortridge@invioautomation.com P 847 343 1168

NEW HAMPSHIRE

Invio Hudson

20 Executive Drive Hudson, NH 03051

P 603 246 5858

Invio Davenport

Eldridge, IA 52748

P 563 285 7515

MINNESOTA

Invio Minneapolis

Plymouth, MN 55447

P 651 252 8748

2440 Fernbrook Lane North

2701 South First Street

IOWA

MICHIGAN

Invio Detroit

35035 Cricklewood Blvd New Baltimore, MI 48048

P 810 794 4929

MICHIGAN

Invio Grand Rapids

2900 Northridge NW Walker, MI 49544

P 231 832 5638

INDIANA

Invio North Vernon

3450 Fourth Street North Vernon, IN 47265

P 317 370 7297

ILLINOIS

Invio Chicago

570 Lake Cook Rd Deerfield, IL 60015

P 651 252 8748

MICHIGAN

Invio Lansing

16185 National Parkway Lansing, MI 48906

P 517 321 7700

MICHIGAN

Invio Reed City

5438 S 220th Ave Reed City, MI 49677

P 231 832 5638

Assembly Show

Automation Application Areas & Use Cases Factory Floor automation across the value chain

Digital Solutions	Factory Floor Solutions						
Site or Enterprise	Warehouse	Fabrication	Assembly	Pack-Out			
Paperless Instructions	AMRs / AGVs	Machine Tend	Robotic Assembly	AGV - Line to Docks			
Tracking & Tracing	ASRS	Robotic Weld	Hard-Automation	Robot Palletizing			
OEE Dashboards	Goods-to-Person	Robotic Grind	AGV build lines	Point Solutions			
Andons & Alerts	VLMs	Robotic Inspect	Automated Tooling				
Digital Twin	Conveyor Sortation		Semi-Auto Tooling				
Augmented Workers	Pick-to-Light		Robotic Inspection				
SPC	Pick-to-Voice		Lights Out Sub-Assy				
Asset Management	Point Solutions		Auto.Transfers				
γ/	Kitting (Cobots)		Process Tech.				
These initiatives are often led by Ops stakeholders, but commonly require IT resources to implement			3D Bin Picking				

Automation project, in practice Building the roadmap of automation initiatives

	Strategy Phase	Strategy Phase Design Phase B		Sustainment Phase
Key Team Members	Advanced Planning Engineers Mar	nufacturing Engineering o Design Engineering		
Activities	 Current state assessment Time study Future state visioning (Factory of the Future) Requirements gathering 	Collaborative workshopsDesign reviews	 Manufacturing @ Invio Factory Acceptance (FAT) Installation Site Acceptance (SAT) Start Up Support 	 Training Troubleshooting (virtual or in-person) Preventative maintenance
Outputs	 2D / 3D Concepts Animation (Visual) Simulation (Throughput) Business Case & ROI Statement of Requirements (SOR) Request for Quote (RFQ) 	 3D Models Build Prints Layout Drawings 	 As-Built Drawings Manuals FAT & SAT punch lists 	 24/7 On-Call Support Field Services support / technicians

Automation project, in practice Building the roadmap of automation initiatives

Applicability to Assembly Operations Common problem areas among manufacturers and potential solutions

Challenges	Opportunities
High labor-density in Assembly areas	 Segment work content, automate portions, & re-balance Cobots and work-sharing Tooling to speed up ops Tooling to reduce tandem lifts
Labor turnover & long training cycles	 Automation for the Dull, Dirty, Dangerous Tooling to improve ergonomics (lift assist, torque reaction)
Non-Value-Adding Time to move materials (pushing, walking, or searching)	 AMRs / AGVs for delivery routes Goods-to-person fulfillment solutions
Quality & inspections, or lack thereof	 Engineer in control points & poka-yokes Vision inspections (absence / presence, labels, tracking) Interlocking the line w/ tooling (no fault forward)

Right-sizing the automation Finding a Cycle-Time appropriate solution

INVIO

AUTOMATION

Product Takt Measured in	Hours	10-60 Minutes	1-10 Minutes	< 1 minute
Products	 Ag (non-tractor) Mining Tanks Aerospace 	 Trucks Rec Sports Specialty vehicle Tractors 	 Auto Electrical infra. EV Batteries Medical Device 	AutoFood & CPGHome applianceConsumer elec.
Class of Solutions	 Bay build Cranes / hoists Manual fixtures Manual weld No MES Lineside material storage 	 Pneumatic manipulators Single-spindle secure Robotic weld AGVs Mixed use kitting 	 Servo manipulators Multi-spindle secure Robotic weld AGVs Kitting 	 Assembly robotics Camera scan/verificat High speed conveyor Automated material presentation at point ouse
Automation ROI				

24

Right-sizing the automation – recognizing time savings

Finding a Cycle-Time appropriate solution

Take a hypothetical assembly line as follows:

This line has 3 stations x 25 minute takt time x 2 operators = 150 minutes of operator involvement per unit

If tools allow for work to happen faster, Operator Involvement per unit goes down:

This line has **120 minutes** of operator involvement per unit

Full automation reduces Operator Involvement significantly:

This line has **80 minutes** of operator involvement per unit + **4** *minutes* of automation time per unit

Towards an ideal Future-State

Invio Factory of the Future Consulting: Common archetypes of assembly plants

Factory of Today	Factory of the Future
Complexity lives on the Assembly Line	 Complexity lives offline (kitting, subs, etc.)
Main Line includes all types of activities	 Only high-value activities allocated Main Line time
Lots of parts & inventory stored at Line	 Only required parts are stored; increased frequency of deliveries
Defects are not found where they are introduced	 In-station quality checks; defects are not passed down the line
"Notorious" stations are well known among the team	 Ergo tooling & reaction-limited devices throughout
Higher WIP inventory	 Low WIP inventory
Unoptimized Line with too many stations	 Optimized Main Line, fed by Sub Assembly areas

Automation projects, in practice

Building the roadmap of automation initiatives

Most projects (& funding) follows a phase-gated project approach; engineering specificity is refined over time

How it works: defining an automation strategy, collaboratively Factory of the Future Consulting

How it works

On-site workshop	Engineering back at Invio		Deliverables	Benefits
A cross-functional team of Invio &	Leveraging our learnings	•	2D AutoCAD drawing of future-state layout	De-risk future investments by
customer stakeholders will:	from the site visit, Invio	•	3D concepts of tooling & automation (top 5)	pulling forward engineering now
 Assess existing facility tooling 	further develops automation	•	3D simulation to communicate the vision	Ensuro all groups are aligned in
Review plans for new facility & tooling	executes on the	•	Investment line-items budgetary estimates	advance of maior changes via
 Whiteboard the ideal future-state 	deliverables	•	Executive-ready report and presentation	cross-functional workshops
 Prioritize areas to concept further 				
 Review product-specific CAD 				Uncover additional synergies that can be designed for now vs.

Document technical requirements

robotic cells)

down the road (e.g., AGV into

Robotic concept studies and simulation Robotics and Flexible Automation

Automation assessments

Robotics and Flexible Automation

