EPSON

Introduction to Parts Feeding Parts Singulation for Robot Automation

Scott Marsic Group Product Manager, Epson Robots

Robotics Today

Automotive

Medical

Industrial

Industries

Electronic

Pharmaceutical

Electronics

Applications

- Assembly ٠
- **Injection Molding** ٠
- Kitting ٠

- Machining •
- Packaging
- Palletizing ٠

- Screwdriving ٠
- Handling ٠
- Dispensing ٠

Why Parts Feeding?

All products are made up of parts, components or subassemblies. In order to make those products, you need access to the parts and components.

- Need components available
 - Quick Access
 - Organized Fashion
- In the case of robotics, we need to know where to get that part and place it to particular tolerance.
- Process of having those components available is parts feeding.

EPSC

What is Singulation?

- Separation of bulk parts so that a robot can efficiently pick each item.
- Machine vision and sensors may be used to enable robot to locate and orient the parts

Introduction to Parts Feeding

Trends

3

4

Getting Started

1 Selecting the Right Parts Feeder

Important Considerations

1

2

3

4

5

- Part Type & Complexity
- Current and Future Part Needs
- Volume vs. Variety (Part Mix)
- Throughput (Parts per Hour)
- Cost

Part Type & Complexity

Part Types Part Features to Consider: Shape, length, width, thickness & weight
Materials: Plastic, Metal, Rubber
Examples: Fasteners, Clips, Diaphragms, Connectors, Components, Brackets, Tubes
Part Features to watch out for:

- Angles
- Grooves
- Flanges
- Protrusions
- Curved Surfaces

Simple parts = Faster throughput Complex parts = Require special tooling

EPSO

- Part Complexity
- Part complexity determines feeder type requirement
- More part features (protrusions) = More different part orientations
- Wet or oily parts require special feeder lining
- Special feeder coating may be required

Current and Future Part Needs

Consider both current part needs and those you may be processing in the future.

High Product Mix = Frequent Changeovers = Costly Retooling

Volume vs. Variety

Part Volume will determine Feeder Type

High Volume / Low Mix

High quantities of same part

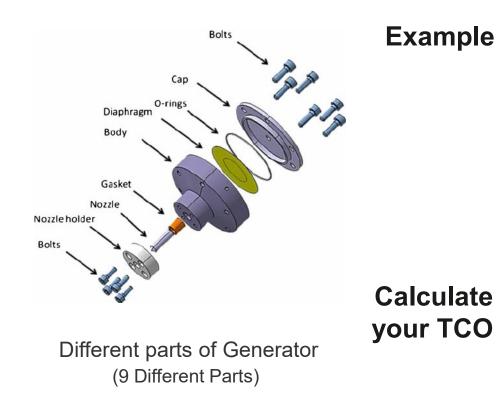
Low Volume / High Mix

Small Batch with different parts

Tradeoffs:

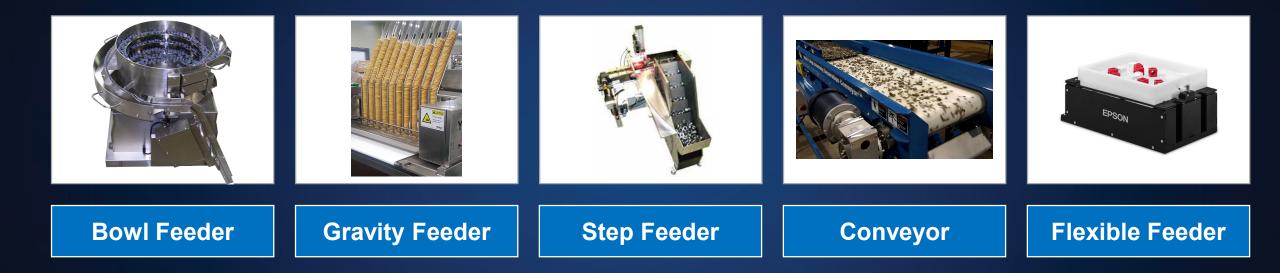
Cycle Time

Precision


Flexibility

- What is your desired throughput? Your parts per minute (cycle time)?
- What kind of precision does your process require?
- How many & how often do you anticipate changeovers?

V Total Cost of Ownership (TCO)


High Throughput = Bowl Feeders (avg cost \$20,000 - \$40,000)

9 parts x \$20,000 = \$180,000

- Cost justified if processing millions of parts
- Cost prohibitive if only processing thousands of parts
- Alternative: Flexible Feeders (avg cost \$15,000 \$25,000) but can handle multiple parts
- Include the purchase price
- How long you intend to use the feeder
- Expected changeovers
- Labor for set up and configuration
- Maintenance

Feeder Types

Bowl / Centrifugal

Feeder Type	Part Volume	Cost	Changeover	Precision	Part Mix
Bowl / Centrifugal	•••		\circ \circ	\bigcirc	•

Bowl Feeder - uses vibration to feed parts along a spiral track on the container walls to singulate parts.

Centrifugal – Similar but bowl spins at high speeds, force parts to the outside of the bowl to singulate parts

Gravity Feeder

Feeder Type	Part Volume	Cost	Changeover	Precision	Part Mix
Gravity Feeder	\bigcirc	•	•	•	•

Gravity Feeder - Stationary track tilt at an angle that relies on gravity to feed individual parts.

Step Feeder

Feeder Type	Part Volume	Cost	Changeover	Precision	Part Mix
Step Feeder			Part Specific		

Step Feeder - Typically cleated, vertical or horizontal conveyor – based feeder that moves multiple parts at a time by "scooping" parts out of a hopper

Conveyor

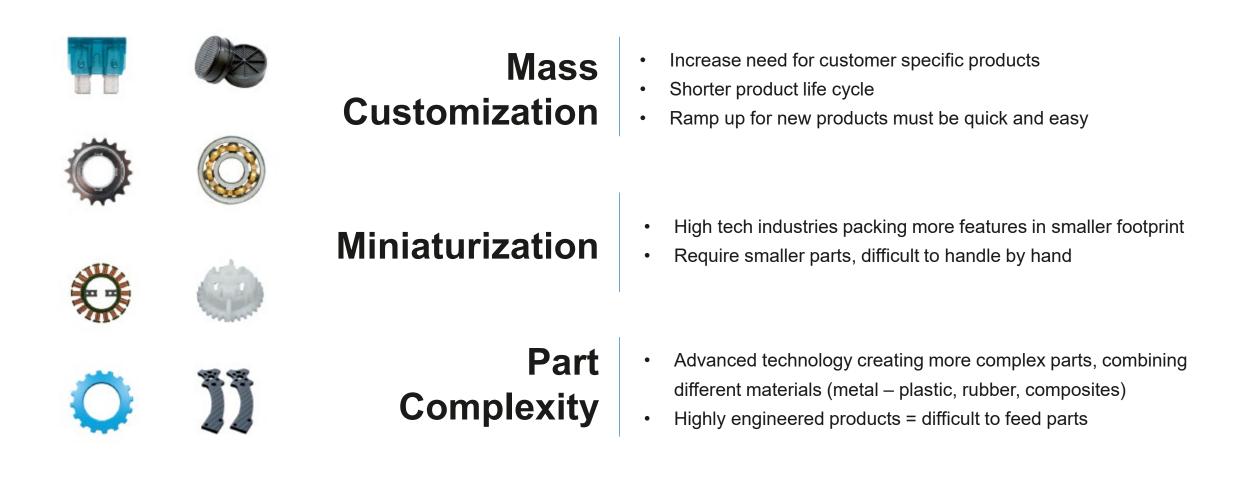
Feeder Type	Part Volume	Cost	Changeover	Precision	Part Mix
Conveyor	\circ	Varies		•	$\bullet \bullet \bullet$

Conveyor - Belt, roller, or other. Used with tracking feature to sync with robots or other motion devices to provide indexed or continuous flow

Flexible Feeder

Feeder Type	Part Volume	Cost	Changeover	Precision	Part Mix
Flexible Feeder	\bigcirc \bigcirc			\bigcirc \bigcirc	

Flexible Feeding - Uses multi-axis vibration or conveyors to optimally distribute and singulate parts on a horizontal platform. High performance feeders can control the direction of part movement.


Feeder Comparison

	Feeder Type	Throughput	Cost	Changeover	Precision	Part Mix
Low Mix / High Volume	Bowl / Centrifugal		•	\bigcirc \bigcirc	\bigcirc \bigcirc	•
LovHigh	Gravity	\bigcirc \bigcirc	\circ		•	•
High Mix / Low Volume	Step	\bigcirc \bigcirc	\bigcirc \bigcirc	Part Specific	•	•
	Conveyor	\bigcirc \bigcirc	Varies		•	
	Flexible Feeding	\bigcirc \bigcirc	\circ		\bigcirc \bigcirc	

3 Trends Impacting Parts Feeding

Getting Started

Important Considerations

1

2

3

A

5

Essential Components

When Do You Need Machine Vision

Parts Feeding Optimization

Pitfalls to Avoid

Integration

20

Essential Components

Feeder

- Evaluate your process needs for part volume vs. mix when selecting a feeder
- Consider tradeoff between cycle time, precision & flexibility

Hopper

- Used to provide continuous flow of parts to the feeding process
- Type of feeder will dictate type of hopper

Motion Device

- Electric or Pneumatic slide
- More flexible solution such as SCARA, 6-Axis or Delta robots
- Consider long and short term needs when selecting a motion device

Controls

- Robot controller
- PLC, Ethernet/RS-232 & I/O

hopper feeder

Robot Selection Payload: part weight <u>plus</u> end of arm tooling

Find parts when feeder does not put the parts in a fixed position

Improves precision & placement

Conveyor Tracking Flexible Feeders

• Key component to flexible feeding and conveyor tracking

Advantage

Vision helps robots adapt to different parts, short runs and change overs

Parts Feeding Optimization

Staging Area

- Include staging area as a buffer when there are no parts ready to be picked up by robot
- Especially useful when fixed cycle times are critical
- End-of-Arm Tooling
- Select right EOA Tooling for your part
- Rule of thumb is to pick from top of part, picking from side requires additional vision programming
- Multi-headed tooling or dual grippers can improve throughput

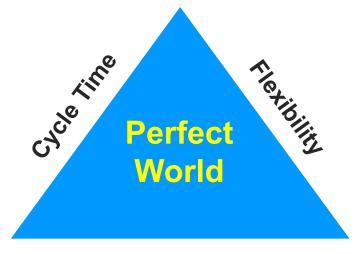
- Part Features to Consider: Shape, length, width, thickness & weight
- **Examples**: Fasteners, Clips, Diaphragms, Connectors, Components, Brackets, Tubes
- Part Features to watch out for: Angles, Grooves, Flanges, Protrusions, Curved Surfaces

- Part complexity determines feeder type requirement
- More part features (protrusions) = More different part orientations
- Wet or oily parts require special feeder lining
- Special feeder coating may be required

TEST YOUR PARTS

Difficult to Feed Parts

- Parts that can bind together (i.e. springs)
- Extremely thin & lightweight
- Silicon parts
- Magnetic parts
- Ceramic parts
- Soft, flexible parts that can change form
- Round or cylindrical parts

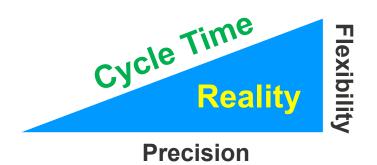


Part Complexity

Part Types

Determine Your Application Requirement Upfront

Precision



Bowl Feeder

Flexible Feeder

Precision

Fixed Cycle Time

- Parts must be fed at absolute time intervals
- Used with indexing machines

Average Cycle Time

- Parts are fed at flexible time intervals
- Requires that an overall average is maintained to hit cycle times

Flexible feeders can accommodate both fixed and average cycle time

Who will build your parts feeding system?

Manpower: In-House Resources vs. System Integrators

Components: Robot + Bowl Feeder Interface: I/O Integration Level: Easy

Components: Robot + Feeder + Vision **Interface:** Ethernet **Integration Level:** Difficult to Easy

Summary

Parts feeding is required for most assembly applications

Before feeder selection, think through your current and future part needs

There are many parts feeding solutions available depending on your part needs & requirements

Mass customization, miniaturization & part complexity are all pushing growth in flexible feeding

Avoid the Pitfalls (Tradeoffs, Changeovers, Fixed vs. Avg Cycle Time)

Test Your Parts!

Thank you!

For more information, please visit <u>www.epsonrobots.com</u>

Scott Marsic Group Product Manager scott.marsic@ea.epson.com

