

R UNIVERSAL ROBOTS

Automation Systems Integration: 4 Paths to Success

Joe Campbell

ASSEMBLY SHOW Learning Theater 10/2022

R

Joe Campbell Universal Robots Strategic Marketing Applications Development

2

Traditional Automation

Collaborative Automation

Cobot Basics

Collaborative & Safe – Capable to safely operate alongside humans in shared space. Easy to Program - No previous coding, robotics, automation experience required. **Fast Setup** – 120v power, simple out-of-box experience. Flexible & Versatile – Easy to redeploy into new applications or new production runs. **Cost** - 1/3 to 1/2 of traditional automation. Economically viable in high mix / low volume operations.

WHERE ARE THE COBOTS?

Everywhere. All applications. All industries.

• What's Next?

UNIVERSAL ROBOTS

The Manufacturing Labor Shortage Just Won't Go Away

Source: National Association of Manufacturers Economic Report 6/10/22

JUNE 2022: 1,000,000 MANUFACTURING JOB OPENINGS

Manufacturing Job Openings

Thousands of openings, seasonally adjusted

Bill Martin, MA Industries: *"I keep hearing about all the unemployed people,* [but] I certainly can't find any of those folks."

Reshoring driving growth in US manufacturing

Wage differences decrease and shipping costs increase

Wage differences between China and US decreased from 30x in 1995 to ~3.5x in 2020 Shipping cost from China to US increased 5x from 2020 to 2021

Source: US Bureau of Labor Statistics Report China: Trading Economics

TERADYNE

Labor Summary Infographic

The New Face of DIY Robotics

Manufacturing & production, engineers & managers, machine operators, machine set up, MRO technicians, line operators, welders, maintenance.

-NOT-

Automation engineers, robot programmers, internal integrators, "automation department", teams of specialists (programmers, 3D CAD operators, simulation engineers, project managers, mechanical designers).

Cobots Are Reaching a New Class of Customers

- New to Automation
- No Robot Engineers
- Small and Medium Enterprises, aka SME's.

In 2021, there were 292,825 factories in the US. Approximately 91% had less than 100 employees.

And Traditional Automation Customers

DIY Enablers

- UR Academy
- Application Builder
- UR+
- PolyScope

UR Academy

- Online training available at no charge, at https://www.universal-robots.com/academy/
- 150,000+ users
- 130+ countries
- 16 languages
- 107 UR Authorized Training Centers

Application Builder

- Download your customized solution package.
- Program Templates
- How-To Cards

The App Store for UR Cobots

- 410 (and counting...) components, peripherals, accessories, and application kits, engineered to work seamlessly with UR Cobots.
- Tested, validated and certified by UR.
- UR+ products reduce the time, cost and risk in any project.

https://www.universal-robots.com/plus/

Rapid Deployment Robotics

4 weeks from purchase order to production? How is that possible?

Robot lead times \rightarrow Often in stock at local distributor

Reduced engineering → UR+, Application Builder

Reduced programming → Application Builder, Wizards, PolyScope

Reduced training \rightarrow UR Academy

Reduced site work → 110 V power, no guarding, UR+ mounting systems

OO RPM

DIPM

Cobots = Explosive Growth

Forecast for Collaborative Robot Revenues (2018 - 2028)

UNIVERSAL ROBOTS

Source: Tractica, Markets & Markets, Interact Analysis © 2022 Universal Robots A/S. All Rights Reserved.

Key Takeaways?

DIY is now a viable alternative! But...

- DIY is <u>not</u> appropriate for every company, every project.
- Not all integrators are created equal!

Major Categories Of Integration

Scope, Cost, Risk, Complexity, Schedule

Traditional Integrator

Value Add Distributors

- Engineering to facilitate sales. Recommend configurations, peripherals, options
- Sales Engineer or Application Engineer is face to customer.
- Typically offers factory certified training, as well as remote and on-site support.
- Do not sell to performance specs.

Lean Integrators

Small project teams. Cross disciplines. Owner is often the project manager.

- Nimble processes focused on time. Lead time in weeks, not months.
- Constrained growth big \neq good!
- Small footprint, low overhead.
- Buy versus Build = Buy.

Application & Industry focus: "This is what we do."

Traditional Integrators

Bigger is better. Big teams, big floorspace, big overhead. Big projects!

Multiple departments:

- Sales, Proposal Engineering ٠
- Mechanical, Controls, Simulation •
- Project Management, Supply Chain
- Production, Quality ٠
- ISO processes built around large-scale project execution. Lead times in months.
- Buy versus Build = Build
- "We can do that!"

© 2022 Universal Robots A/S. All Rights Reserved.

Scope, Cost, Risk, Complexity, Schedule

Traditional Integrator

DECISION TIME!

Time to decide what approach is best for your company, your team and your project.

Choosing the integration model is a business decision, driven by 4 key factors:

- Project Urgency
- In-house Resources
- Project Scope
- Project Risk

PROJECT URGENCY

What is the primary problem the project is solving? What is the primary benefit to be achieved?

- Labor Shortage / Savings
- Machine Utilization
- Customer Order / Future Capacity
- Customer Account Control
- Safety
- R&D
- Project timeline / schedule

IN-HOUSE RESOURCES

What resources are can be assigned to this project?

- Availability Full time, part time, hours per week
- Other assignments ("Day Job")
- Automation experience
- Specialized training, such as safety protocols and Risk Assessments
- Project management skills

PROJECT SCOPE

Define the project scope, including application challenges:

- Single cell or multiples
- Additional process equipment
- PLC or HMI interface
- Complex sensors required
- Interface with enterprise ERP system
- Simulation / project assessment:
 - Requires >70% of rated payload.
 - Requires >70% of max work envelope.
 - Requires >70% of stated repeatability.

PROJECT RISK

Define major project risks:

- Impact of missing installation and startup schedules
- Impact of missing throughput / production rate goals
- Impact of missing quality objectives or goals
- Impact of overspending budget

UR Application Evaluation Tool

- Captures and quantifies application risk in 6 key areas:
 - Experience with Robots
 - Environmental
 - Robot Capabilities, Performance
 - Tooling & Fixturing
 - Programming
 - Operator Interactions
- Email <u>JOCA@universal-robots.com</u> for a copy.

UNIVERSAL ROBOTS	Process: Palletizing											
plication Evaluation Tool												
et created by Universal Robots USA	Robotics Experience		6		N	lotes to red	luce risk &	complexity				
·····, · · · · · · · · · · · ·	First robot installation at facility	3								1		
ructions	Operators in experienced with robots	1										
columns G and K to type your responses.	No established manual process	2										
uate the process you're considering												
mating For each line of this form assign	Environmental Cleanliness		1									
k / complexity score from 0 to 5 as it	Extreme heat or cold	0	-									
tes to your project ($0 = p/a$, $5 = high$	Water or moisture	0										
to your project's success)	Corrosive liquids	0										
notes next to each line on strategies to	Dust and particles	1										
izate and remove risks from your project		-										
sult your total score below to prioritize	Robot Arm Canabilities		17									
lowmont strategies and winning projects	Precision (% of repeatability)	1										
ioyment strategies and winning projects.	Cycletime (% of top speed)	2										
additional support plaase email	Payload (% of maximum payload)	3			6	oncidor novt	concration	high porform		rohot		
additional support, please email	Payload (% of maximum payload)	4				onsider next	generation	, nign-periorn	nance UR2U	LODOL		
a@universal-robots.com	Mauntine and lauity	4			0	rzu snoula r	educe risk					
	Mounting complexity	5										
	Workpieces & Tooling		16									
	Using in-house tooling	0										
	Variety of part numbers	1										
	Gripper complexity	2										
	Multiple EOATs	3										
	External axes: tracks, lifts, etc	5										
	Tool changer	5										
	Programming Considerations		15									
	Number of steps in process	0										
	Interfacing with external devices	1										
	Part presentation	2										
	Machine vision	4										
	Controlling with PLC	3										
	Using force mode	5										
	Custom operator interface	0										
		Ŭ.										
	Frequency of Operator Interaction		25									
	Cycle time depends on operator	e.	25									
	Releading parts	5										
	Running new programs	5										
	Changing new programs	5										
		5										
	Risk & Complexity Score	=	80	/ 150								
160												1
120								-				
120												
00												
80												
40												
0	Project is low-risk to dep	loy with curre	nt plans					Use notes fro	om your UR :	Sales Team to	reduce comp	Iexity & risk

UNIVERSAL ROBOTS

UR JUSTIFICATION WORKSHEET

- 10 categories of top line and bottom line improvement:
 - Labor, quality, capacity, customer satisfaction, floor space, insurance, etc
- Multiple methods to measure.
- Recommendations on where to find the needed information in every company.
- Email joca@universal-robots.com for a copy.

lastification Colorabor						
Sheet created by Universal Bobots USA	Direct Labor Savings		Some Numbers to Sather Reforeband			
For The Colort Expo	Total annual labor hours saved		Annual unit production volume			
Date created 1/1/2020	• standard cost per labor hour		Standard ank cost			
	or		Average unit sell price			
Instructions	totallabor savings per anit (neurs)		Standard anit labor hours			
Use columns F and P to type your repenses.	 standard cost per labor hour 		Standard labor hear cost, burdened			
filles many categories as are appropriate	 annual values 		Average workers comp claim cost			
for year company and project. If yearde		tetal =	Floor operating cost per It ²			
not have detailed cest information, enter	Rework Savings		Warranty cost, % of annual seles, or			
conservative estimates based on industry	Total annual rework hours saved		Warranty cost, per unit			
standards.	x standard cost per labor hour		Annual inventory carrying cost, % standard costs			
	or					
For additional support, please small	Durrent rework costs					
utura@universal-cobots.com	x rewark reduction %					
		Total - 5 -				
	Scrap Savings					
	Yield Improvement %					
	a annual production volume					

Building the case for robotic automation

White paper Potteried an January 2021

CARRIERE INDUSTRIAL SUPPLY (CIS)

- Complex DIY Project
- 80% of production time plasma-cutting parts for from manual cuts.
- In manual MIG welding, large welded ribs raised critical ergonomic challenges for hard-to-staff welders.
- Due to the very large work pieces, CIS needed an automation solution they could bring to the work piece – not the other way around.

Manufacturer of heavy earth-moving equipment for harsh mining environments, based in Sudbury, ON.

large truck bodies spent cleaning up jagged edges

Carriere Industrial Supply: The Solution

- Deployed UR10e cobots to handle plasma-cutting and MIG welding tasks
- Cleanup after plasma-cutting (grinding jagged edges) now completely eliminated, saving 80% of production time, reducing work on each truck body from 50 to 12 hours.
- MIG welding the large work pieces is now automated by adding the UR10e cobot on a vertical 7th axis placed on a mobile skid.
- Both applications developed in-house.

© Universal Robots

ANDREW PEARCE BOWLS

- labor shortages.
- position to staff.

Artisan woodworker, manufacturing bowls and cutting boards, based in Hartland, VT. Could not keep up with demand due to

Choke point in production was finish sanding, a particularly difficult DDD

With no robotics experience, high mix/low volume production, and a pride in handmade products, Andrew Pearce Bowls had initial reservations about automation.

Andrew Pearce Bowls: The Solution

Value Added Distributor Project

• Finish sanding of cutting boards is now performed by a UR5e finishing cell. The cobot handles the entire process: material handling to load blanks, flipping to allow sanding on top and bottom, and changing sandpaper on the orbital sander.

• Automating finish sanding with UR cut down sanding time by 20%, delivering an overall 40-41% increase in throughput.

• The UR5e, named "Sandrew" delivers a smoother finish and boosted worker morale.

• ROI < 2 months.

PMI: THE PROBLEM

- Metal fabricator that produces stamped and welded metal parts, based in **Bloomer**, Wisconsin
- 120 employees. Faced a tight labor market for skilled welders
- Needed a solution to handle small batch runs – high mix / low volume
- Wanted to increase productivity and profitability while improving working environment for employees.

UNIVERSAL ROBOTS

PMI: THE SOLUTION

- Lean Integrator / OEM Project
- Deployed the BotX Welder from Hirebotics for welding applications
- Ability to quote and perform welding jobs without adding existing staff in the tight labor market
- Existing staff reallocated to larger, more profitable welds
- High mix/low volume welding now automated without developing time-consuming, expensive fixturing

PSA GROUP: THE PROBLEM

- multiple objectives:
- competitiveness.
- Improve overall geometric
- and repetitive stress injuries.

Plant of the Future project, with

Reduce vehicle costs to maintain

dimensional tolerancing (GDT).

Improve working conditions, protect operators from ergonomic

UNIVERSAL ROBOTS

PSA GROUP: THE SOLUTION • Traditional Integrator Project

- UR-10e is invert mounted on a freestanding fixture secured to a lift assist.
- Operators lower the fixture onto the chassis on the moving assembly line.
- Operators are driving screws and nuts in the more accessible locations.
- The UR-10e drives screws in the less accessible locations in the wheel wells and lower chassis.

UNIVERSAL ROBOTS

PTI ENGINEERED PLASTICS: THE PROBLEM

- Michigan based contract molder and manufacturer of plastic components and assemblies struggling with manufacturing labor issues.
- Serves the medical, automotive, defense/aerospace, and commercial/consumer products industries
- Low to mid volume/high mix, for simple to complex projects, from prototype to full production.
- Wide range of legacy molding machines, different sizes and different manufacturers.

PTI ENGINEERED PLASTICS: THE SOLUTION

Value Added Distributor / DIY Project

- First system relied heavily on local distributor for support.
- "Cobot as a Tool" concept, mounted to mobile cart.
- Lift kit allowed height adjustment for variety of molding machines.
- Heavy use of UR+ components, configured and provided by distributor:
 - Flexxbotics Flexx Reference, MurrSystems Cable Management, Ewellix – Liftkit, Vention – framing, UR – IMMI, Robotiq – Insight Software, EMI – Cobot Ready Conveyor
- Next 8 systems were built and integrated as DIY projects.

Major Categories Of Integrators

Traditional Integrator

Thank you

Joe Campbell joca@universal-robots.com +734.417.7083

