This website requires certain cookies to work and uses other cookies to help you have the best experience. By visiting this website, certain cookies have already been set, which you may delete and block. By closing this message or continuing to use our site, you agree to the use of cookies. Visit our updated privacy and cookie policy to learn more.
This Website Uses Cookies By closing this message or continuing to use our site, you agree to our cookie policy. Learn MoreThis website requires certain cookies to work and uses other cookies to help you have the best experience. By visiting this website, certain cookies have already been set, which you may delete and block. By closing this message or continuing to use our site, you agree to the use of cookies. Visit our updated privacy and cookie policy to learn more.
Engineers at Stanford University have developed a new way to make lithium-ion battery packs last longer and suffer less deterioration from fast charging. It could enable electric vehicle batteries to handle more charge cycles and last longer.
Lightweight batteries will be one of the next big breakthroughs in EV technology. One possibility that intrigues engineers is structural batteries, which can be built into the structure of a vehicle’s body or chassis to fulfill load-bearing needs while producing power.
Solid-state batteries use solid electrolytes, not liquid, which results in a higher energy density than traditional lithium-ion chemistries. After years of development, they promise to be the next big trend in electric vehicle technology.
TUSCALOOSA, AL—Mercedes-Benz Group AG has opened a new battery assembly plant near its factory here, a few months ahead of when it will start producing electric vehicles.
Over the next decade, tens of millions of batteries will be necessary to keep up with skyrocketing demand for electric vehicles. A new breed of supersized battery factories must deploy state-of-the-art automation while harnessing advanced supply chain strategies.
A team of engineers at the University of California San Diego have created a new type of battery that weaves two promising subfields into a single product.