This website requires certain cookies to work and uses other cookies to help you have the best experience. By visiting this website, certain cookies have already been set, which you may delete and block. By closing this message or continuing to use our site, you agree to the use of cookies. Visit our updated privacy and cookie policy to learn more.
This Website Uses Cookies
By closing this message or continuing to use our site, you agree to our cookie policy. Learn More
This website requires certain cookies to work and uses other cookies to help you have the best experience. By visiting this website, certain cookies have already been set, which you may delete and block. By closing this message or continuing to use our site, you agree to the use of cookies. Visit our updated privacy and cookie policy to learn more.
Assembly Magazine logo
search
cart
facebook twitter linkedin youtube
  • Sign In
  • Create Account
  • Sign Out
  • My Account
Assembly Magazine logo
  • Home
  • Magazine
    • Current Issue
    • Digital Edition
    • Archives
    • Specs Book
    • How-To-Guide
    • Buyers Guide
  • Exclusives
    • Plant of the Year
      • About Plant of the Year
      • Nomination Form
    • Capital Spending
    • State of the Profession
  • Industries
    • Aerospace
    • Appliance
    • Automotive
    • Medical Devices
    • DFMA Assembly
    • Green Manufacturing
    • Lean Manufacturing
    • Electronics Assembly
    • Machinery Assembly
  • Technologies
    • Adhesives
    • Assembly Presses
    • Automated Assembly
    • Dispensing
    • Motion Control
    • Screwdriving and Riveting
    • Plastics Assembly
    • Robotics
    • Test and Inspection
    • Welding
    • Wire Processing
    • Workstations
  • Columns
    • Assembly in Action
    • Automation Profiles
    • Medical Device Assembly
    • On Campus
    • Shipulski on Design
    • The Editorial
    • XYZ
    • Moser on Manufacturing
    • 21st Century Assembly
    • Mind Your Ps and Qs
  • New Products
  • More
    • Web Exclusives
    • Classifieds
    • eNewsletter
    • Blog
    • Market Research
    • Store
    • Product Spotlight
    • White Papers
    • Integrated Showcase
    • Custom Content & Marketing Solutions
    • Monthly Quiz
    • Sponsored Insight
  • Multimedia
    • Assembly Radio
    • Assembly TV
    • Image Galleries
    • Webinars
    • Interactive Spotlights
    • eBooks
  • Events
    • Calendar
    • The Assembly Show
  • Contact
    • Contact Us
    • Advertise
  • InfoCenters
    • Collaborative Robot Revolution
    • Factory of the Future
Home » The Demise of the Electrically Commutated Motors ECMs
IndustriesAppliance Assembly
Power

The Demise of the Electrically Commutated Motors ECMs

The market will expand as ECMs are replaced by more cost-competitive, efficient technologies.

Smart synchronous motor fan

This is a smart synchronous motor in fan assembly. Source: QM Power

Deli-case
Energy-Inside-SSM-vs-ECM-Voltage-to-coils-comp
smart synchronous motor casing

A smart synchronous motor casing for drop-in replacement is shown here. Source: QM Power

Smart synchronous motor fan
Deli-case
Energy-Inside-SSM-vs-ECM-Voltage-to-coils-comp
smart synchronous motor casing
May 1, 2016
KEYWORDS ECMs / Electrically Commutated Motors / motors
Reprints

Since the introduction of Electrically Commutated Motors (ECMs) over fifty years ago, there has not been a substantial energy efficiency improvement in motor technology for commercial refrigeration applications that exceeds the current generation of available ECM products.

Generally considered to be today’s ‘state of the art’ solution, ECMs are now the standard motor used by most OEM product designers for everything from commercial refrigeration fans to everyday consumer products. While there is no question that ECMs offer better efficiency than older motor designs, there is still plenty of room for improvement. The problem is that companies manufacturing motors in this space have made only incremental improvements throughout the years, consisting of better engineered circuits and materials to fix the previous SKUs design faults. A more advanced alternative motor design has not been available that can seriously challenge the status quo and shake up the motor industry, until now. 

For years, the commercial refrigeration industry has predominantly had two primary choices for fan motors: the induction or shaded-pole motor invented by Nikola Tesla in the 1880s, and the Electronically Commutated Motor (ECM) developed in the 1960s. More than sixty-five percent of all commercial refrigeration motors deployed today are still shaded-pole motors, which are often twenty percent or less energy efficient. The ECM has approximately a thirty-five percent market share and is typically fifty to sixty percent efficient at 9-12 watt output when tested in the field. 

For engineers and contractors working on the next generation of commercial refrigeration products, there is a rapidly emerging class of new, smart synchronous permanent magnet motors that has the potential to completely disrupt the ECM market in a big way. The smart synchronous permanent magnet motor design provides grocers, convenience stores, restaurants, and their OEMs, contractors, and utilities with a compelling new choice: a seventy-five percent efficient motor at 9-12 watts for approximately the same cost as an ECM.

As with most major advances in technology, most new inventions are later seen as obvious in hindsight. This new class of motors is no different. It utilizes a concept that is both simpler in its design, and vastly reduces the amount of energy consumed when compared to all motor types available on the market today.

Smart, Synchronous Motors
Smart Synchronous Motors are a permanent magnet motor with a circuit design that limits the need to manage energy draw beyond the initial motor startup. Whereas an ECM requires continual conversion between AC and DC power throughout its use to operate, the beauty and simplicity behind this new class of motors lies in its ability to operate at the AC line frequency of grid supplied power, essentially eliminating the need for power conversion after the motor starts (the need to rectify to DC and back to AC). 

Once the motor reaches its targeted speed, it efficiently shifts the motor to AC power supplied directly from the grid. The elimination of the power conversions has been found to save in excess of 30% to 50% versus ECMs and about 80% versus shaded pole motors. The stability and performance of air flow in the refrigeration system is further improved by operating off the AC line frequency, because changes to voltage do not affect fan speed (which is the case with many ECMs).
Another benefit to this design is that reducing the amount of electronics and the duty cycle on the motor increases reliability while extending the life expectation of the motor. As a result, these motors have a much longer warranty period, often twice that of ECM alternatives. Furthermore, by eliminating the use of electronics during operation, any surges in the line would be absorbed by the coils, not the electronics. 

Most critics tend to challenge the efficacy of any new technology claims before they have been tested outside of a controlled lab environment. The results of the first DOE demonstration were documented in a publication by Oak Ridge National Laboratory in September 2015 which found this new class of motors to have a significant energy savings over ECM motors, with the potential to reduce overall source energy consumption in the United States by as much as 300 billion kilowatt-hours or more with proportional environmental benefits.

“It’s Really About Airflow, Not RPM”

A common misconception about commercial refrigeration systems is that they need to be run at 1550 RPM, the speed commonly associated with a shaded pole motor. If you look at the history of shaded pole designs, 1550 RPMs are actually produced as a result of the inefficiencies caused by the motor “slip” from 1800 RPM to 1550 RPM. Since ECMs can be controlled to operate at any speed, many designers chose that speed to simplify the conversion to ECMs as a potential drop-in replacement. 

Refrigeration systems typically are optimized for peak efficiency when a specific fixed airflow can be achieved by matching a specific motor speed with a specific pitch blade. Both motors and blades are typically designed to have a peak efficiency at only one point and have much lower efficiencies when operating off those optimized design points. With airflow requirements varying by case, OEM designers have typically chosen a fixed speed motor and then used different pitch blades to provide the desired airflows. 

A more recent strategy ECM manufacturers are considering is to source one variable speed motor that uses a single fan blade to provide a variety of prospective airflows with less SKUs. This is primarily intended to reduce costs at the OEMs as the speed is still fixed before delivering to the end customer. End users are currently evaluating whether the prospective supply chain efficiencies would partially be overwhelmed by the additional operating costs they could incur due to the lower efficiencies of the motor running in the field.

Is the end of the ECM market inevitable?

As with any major advancement in design, OEMs must adapt by phasing out inefficient technologies in their products to keep pace with the adoption of the latest technology. In the United States, rising minimum efficiency standards set forth by the Department of Energy are mandating the push towards more efficient technology approximately every three years. Having a new class of motors that operate at a higher efficiency could accelerate or even encourage utilities and government entities across the globe to adopt a higher efficiency standard than ECMs can adhere to today. 

For applications requiring a significant amount of variable speeds, the additional costs associated with multiple power conversions may not overwhelm the potential value proposition. On the other hand, in commercial refrigeration and HVAC markets, where fixed airflows are often preferred, one or multiple smart synchronous permanent magnet motor designs may likely be adopted more quickly than in other applications and could rapidly transition into other competitive market segments as the technology evolves.

What about the cost?

The newest technologies are typically the most expensive, which is why it often takes so long to drive adoption into the mainstream. In the case of the smart synchronous permanent magnet motor, the reduction of electronic circuitry to maintain the motor’s continuous operation and its simplistic design should keep the costs nearly the same as existing ECMs today. 

How does an ECM manufacturer stay competitive when a more advanced technology is available? Many might argue that ECM manufacturers would be forced to lower the upfront cost. Unfortunately, when looking at the bigger picture, choosing a motor based on upfront or lowest cost can often times be misleading. The total cost of ownership must be a factor. For example, if this technology cost the same wholesale price as current ECM offerings, and saved as little as a few dollars a year over an estimated 10 year product lifespan, the impact it would have could make it nearly impossible for existing motor solutions to compete on price. Theoretically, ECM manufacturers could potentially even ‘give’ their product away for free and still not achieve the same total cost of ownership, extended life, and reliability benefits for end users as a smart synchronous permanent magnet design.

In Conclusion

Appliance manufacturers and other OEMs have been gradually and steadily replacing incumbent AC motors with ECMs in a market that is expected to grow from $99.85 billion in 2014 to $141.7 billion by 2022 according to a report from Grand View Research. (www.grandviewresearch.com/industry-analysis/electric-motor-market)

The market will expand further as ECMs are replaced by even more cost-competitive, efficient technologies such as the smart synchronous permanent magnet motor.

With minimum efficiency regulations expected every three years on each appliance, the choices engineers make today could drive significant cost out of designs now and well into the future, and make it possible to avoid or skip the need for a whole redesign cycle altogether.
 

Source: appliance DESIGN

subscribe to assembly

Related Articles

The Turbine: The Air Motor Packing Maximum Efficiency

X-Y-Z: Electric Cylinders Take the Air Out of Linear Motion

Linear Motor Transport Systems

The Factory of the Future is Now – and it’s Everywhere

Related Directories

Festo Corp.

Subscribe For Free!
  • Print & Digital Edition Subscriptions
  • Assembly eNewsletters
  • Online Registration
  • Subscription Customer Service
  • Mobile App

More Videos

Popular Stories

lordstown motors

Electric Truck Manufacturer Buys GM’s Lordstown Assembly Plant

Bobcat manufacturing

Bobcat Announces Manufacturing and Assembly Facility Upgrades

Wearable Device 11-27

Wearable Lets Users Control IoT-Enabled Devices With Brain Waves

Breaking and Industry News

Airstream Manufacturing Expands With $50 Million Factory

Rayovac 11-20

Energizer Moving VT Battery Manufacturing Facility to Former Rayovac Plant

Upcoming Assembly Events and Webinars

Events

January 1, 2030

Webinar Sponsorship Information

For webinar sponsorship information, visit www.bnpevents.com/webinars or email webinars@bnpmedia.com.

View All Submit An Event

Poll

Cloud Computing

Are you using cloud computing at your assembly plant?
View Results Poll Archive

Products

Welding: Principles & Practices

Welding: Principles & Practices

This text introduces students to a solid background in the basic principles and practices of welding.

See More Products
assembly buyers guide

Assembly Magazine

assembly dec 2019

2019 December

The 2019 December Assembly features our Capital Spending Report, plus much more. Check it out today!
View More Create Account
  • More
    • Assembly Plant of the Year
    • Manufacturing Group
    • List Rental
    • Organizations
    • Connect
    • Want More?
    • Polls
    • Privacy Policy
    • Subscribe
    • Survey And Sample

Copyright ©2019. All Rights Reserved BNP Media.

Design, CMS, Hosting & Web Development :: ePublishing