This website requires certain cookies to work and uses other cookies to help you have the best experience. By visiting this website, certain cookies have already been set, which you may delete and block. By closing this message or continuing to use our site, you agree to the use of cookies. Visit our updated privacy and cookie policy to learn more.
This Website Uses Cookies
By closing this message or continuing to use our site, you agree to our cookie policy. Learn More
This website requires certain cookies to work and uses other cookies to help you have the best experience. By visiting this website, certain cookies have already been set, which you may delete and block. By closing this message or continuing to use our site, you agree to the use of cookies. Visit our updated privacy and cookie policy to learn more.
Assembly Magazine logo
search
cart
facebook twitter linkedin youtube
  • Sign In
  • Create Account
  • Sign Out
  • My Account
Assembly Magazine logo
  • Home
  • Magazine
    • Current Issue
    • Digital Edition
    • Archives
    • Specs Book
    • How-To-Guide
    • Buyers Guide
  • Exclusives
    • Plant of the Year
      • About Plant of the Year
      • Nomination Form
    • Capital Spending
    • State of the Profession
  • Industries
    • Aerospace
    • Appliance
    • Automotive
    • Medical Devices
    • DFMA Assembly
    • Green Manufacturing
    • Lean Manufacturing
    • Electronics Assembly
    • Machinery Assembly
  • Technologies
    • Adhesives
    • Assembly Presses
    • Automated Assembly
    • Dispensing
    • Motion Control
    • Screwdriving and Riveting
    • Plastics Assembly
    • Robotics
    • Test and Inspection
    • Welding
    • Wire Processing
    • Workstations
  • Columns
    • Assembly in Action
    • Automation Profiles
    • Medical Device Assembly
    • On Campus
    • Shipulski on Design
    • The Editorial
    • XYZ
    • Moser on Manufacturing
    • 21st Century Assembly
    • Mind Your Ps and Qs
  • New Products
  • More
    • Web Exclusives
    • Classifieds
    • eNewsletter
    • Blog
    • Market Research
    • Store
    • Product Spotlight
    • White Papers
    • Integrated Showcase
    • Custom Content & Marketing Solutions
    • Monthly Quiz
    • Sponsored Insight
  • Multimedia
    • Assembly Radio
    • Assembly TV
    • Image Galleries
    • Webinars
    • Interactive Spotlights
    • eBooks
  • Events
    • Calendar
    • The Assembly Show
  • Contact
    • Contact Us
    • Advertise
  • InfoCenters
    • Collaborative Robot Revolution
    • Factory of the Future
Home » Bonding Lines: Composite-Metal Hybrids
Columns

Bonding Lines: Composite-Metal Hybrids

January 26, 2009
Dr. George W. Ritter
Reprints
What if you could take the best materials available, combine them anyway you need to, and produce the most efficient, light-weight structures imaginable? What if you could assemble those structures with adhesives? You can, with fiber-reinforced composites.

What if you could take the best materials available, combine them anyway you need to, and produce the most efficient, light-weight structures imaginable? What if you could assemble those structures with adhesives? Welcome to the 21st century.

The development of fiber-reinforced composites is not equal to that of smelting iron, but the advent of composites significantly changed the scope of materials engineering. Wood, the most common composite, required builders to design structures based on the tensile and compressive properties of unidirectional cellulosic fibers. Out-of-plane flexural deficiencies were overcome by using more or thicker pieces, albeit with a weight penalty.

Composite structure allows for directed fiber placement to tune load management because most of the performance comes from the fibers. The resin matrix holds the fibers together. Carbon-fiber reinforced composites have a tensile modulus roughly equal to that of aluminum, but at only 60 percent of the weight. They have about half the modulus of titanium at 40 percent of the weight, and about 30 percent that of steel at 30 percent of the weight. Because composites are usually layered structures, with the layers only being held together by resin, their out-of-plane tensile properties are limited by the interlaminar shear properties of the resin. However, they offer attractive strength, stiffness and weight management if parts are designed correctly.

In those instances where composites cannot handle structural loads, they can be combined with metals in a hybrid design. Mechanical fasteners are the most common joining method. However, bonded hybrid structures are beginning to appear, as finite element analysis (FEA) techniques boost confidence levels. Combined modeling and testing demonstrate performance advantages for bonded composite-metal structures.

To produce bonded hybrid structures, the directional properties of the composite must be accounted for in designing the composite-metal joint. Adhesives work well when loaded in shear, so the composite fiber alignment in the joint region should favor shear load transfer. Similarly, the joint design should discourage out-of-plane peel loads, which are undesirable for adhesives. Overdesign can allow for temperature and humidity effects on both the composite and the adhesive. The metal must have adequate corrosion protection and priming to preserve the integrity of the bond.

FEA modeling enables us to unravel this complexity using the measured properties of the materials, and a model of the joint performance, at both the norm and the extremes of the performance envelope. Proof structures can be produced to test the validity of the model under ambient and extreme conditions. Iterative changes to the model can then be made and the process repeated until the predictability of the model is confirmed.

While complex, once the tools are known and practiced, the approach becomes an engineering exercise. Good results can be achieved, as we have been fortunate to experience here at EWI. More than once, we have shown that the performance of a bonded structure exceeds that of mechanical fasteners in weight savings, materials and fabrication cost. Good engineering design forces the failure into the composite, meaning that the adhesive bond is stronger and more durable than the materials.

That’s as good as it gets!

Once the mechanical issues are tackled, there remains the question of reliability. There is admittedly a problem in predicting performance with adhesives. The conservative approach is to take the worst properties of the materials and design around those properties. Increasing the joint dimensions produces a weight penalty but increases the factor of safety. Once the model predicts, and a structure confirms, the required factor of safety, the designer can have confidence the joint will perform as expected even under severe load transgressions.

Another confidence-builder is the use of nondestructive evaluation (NDE), most commonly ultrasonic inspection. Ultrasonic NDE of hybrid joints is challenging because the materials have different properties and ultrasonic waves are sensitive to material modulus. The joints are often accessible from one side only, meaning the interrogating wave travels through metal, then adhesive, bounces off composite, and reflects back. Multiple interfaces produce multiple reflections and considerable attenuation. Phased array and signal processing techniques produce enhanced detection and resolution capabilities in complex joints.

The days of “what if” are giving way to “when do we start.” Advanced modeling, interactive testing and NDE offer new opportunities for design and use of composite-metal hybrid structures. The 21st century has arrived.

subscribe to assembly

Recent Articles by George Ritter

Bonding Lines: How Good Is Good?

Bonding Lines: Belt and Suspenders

Bonding Lines: Phenolics-Oldies but Goodies

Bonding Lines: Hotmelts-Modern Ancients

Technology Leader for Adhesives and Plastics
Edison Welding Institute, Columbus, OH

EWI is the largest research and applications facility in North America dedicated to the art and science of materials joining.

Related Articles

Bonding Lines: "Epoxy Those Parts"

Bonding Lines: Cyanoacrylates for Assembly

Bonding Lines: Acrylic Adhesives Forte-Versatility

Bonding Lines: Hotmelts-Modern Ancients

Related Products

Plastics and Composites Welding Handbook

Lean Manufacturing: Business Bottom-Line Based

The Foreman on the Assembly Line

Kaizen Assembly: Designing, Constructing, and Managing a Lean Assembly Line

Related Directories

Master Bond Inc.

Coast Composites

Subscribe For Free!
  • Print & Digital Edition Subscriptions
  • Assembly eNewsletters
  • Online Registration
  • Subscription Customer Service
  • Mobile App

More Videos

Popular Stories

lordstown motors

Electric Truck Manufacturer Buys GM’s Lordstown Assembly Plant

Bobcat manufacturing

Bobcat Announces Manufacturing and Assembly Facility Upgrades

Wearable Device 11-27

Wearable Lets Users Control IoT-Enabled Devices With Brain Waves

Rayovac 11-20

Energizer Moving VT Battery Manufacturing Facility to Former Rayovac Plant

Breaking and Industry News

Airstream Manufacturing Expands With $50 Million Factory

Upcoming Assembly Events and Webinars

Events

January 1, 2030

Webinar Sponsorship Information

For webinar sponsorship information, visit www.bnpevents.com/webinars or email webinars@bnpmedia.com.

View All Submit An Event

Poll

Cloud Computing

Are you using cloud computing at your assembly plant?
View Results Poll Archive

Products

Welding: Principles & Practices

Welding: Principles & Practices

This text introduces students to a solid background in the basic principles and practices of welding.

See More Products
assembly buyers guide

Assembly Magazine

assembly dec 2019

2019 December

The 2019 December Assembly features our Capital Spending Report, plus much more. Check it out today!
View More Create Account
  • More
    • Assembly Plant of the Year
    • Manufacturing Group
    • List Rental
    • Organizations
    • Connect
    • Want More?
    • Polls
    • Privacy Policy
    • Subscribe
    • Survey And Sample

Copyright ©2019. All Rights Reserved BNP Media.

Design, CMS, Hosting & Web Development :: ePublishing