This website requires certain cookies to work and uses other cookies to help you have the best experience. By visiting this website, certain cookies have already been set, which you may delete and block. By closing this message or continuing to use our site, you agree to the use of cookies. Visit our updated privacy and cookie policy to learn more.
This Website Uses Cookies
By closing this message or continuing to use our site, you agree to our cookie policy. Learn More
This website requires certain cookies to work and uses other cookies to help you have the best experience. By visiting this website, certain cookies have already been set, which you may delete and block. By closing this message or continuing to use our site, you agree to the use of cookies. Visit our updated privacy and cookie policy to learn more.
Assembly Magazine logo
search
cart
facebook twitter linkedin youtube
  • Sign In
  • Create Account
  • Sign Out
  • My Account
Assembly Magazine logo
  • Home
  • Magazine
    • Current Issue
    • Digital Edition
    • Archives
    • Specs Book
    • How-To-Guide
    • Buyers Guide
  • Exclusives
    • Plant of the Year
      • About Plant of the Year
      • Nomination Form
    • Capital Spending
    • State of the Profession
  • Industries
    • Aerospace
    • Appliance
    • Automotive
    • Medical Devices
    • DFMA Assembly
    • Green Manufacturing
    • Lean Manufacturing
    • Electronics Assembly
    • Machinery Assembly
  • Technologies
    • Adhesives
    • Assembly Presses
    • Automated Assembly
    • Dispensing
    • Motion Control
    • Screwdriving and Riveting
    • Plastics Assembly
    • Robotics
    • Test and Inspection
    • Welding
    • Wire Processing
    • Workstations
  • Columns
    • Assembly in Action
    • Automation Profiles
    • Medical Device Assembly
    • On Campus
    • Shipulski on Design
    • The Editorial
    • XYZ
    • Moser on Manufacturing
    • 21st Century Assembly
    • Mind Your Ps and Qs
  • New Products
  • More
    • Web Exclusives
    • Classifieds
    • eNewsletter
    • Blog
    • Market Research
    • Store
    • Product Spotlight
    • White Papers
    • Integrated Showcase
    • Custom Content & Marketing Solutions
    • Monthly Quiz
    • Sponsored Insight
  • Multimedia
    • Assembly Radio
    • Assembly TV
    • Image Galleries
    • Webinars
    • Interactive Spotlights
    • eBooks
  • Events
    • Calendar
    • The Assembly Show
  • Contact
    • Contact Us
    • Advertise
  • InfoCenters
    • Collaborative Robot Revolution
    • Factory of the Future
Home » X-Rays Help Researchers Identify Cause of Metal 3D Printing Defects
Assembly Breaking News

X-Rays Help Researchers Identify Cause of Metal 3D Printing Defects

3D Printing Defects 2-27
February 26, 2019
KEYWORDS Carnegie Mellon University / defects in 3D printing / metal 3D printing
Reprints

PITTSBURGH—Researchers from Carnegie Mellon University and Argonne National Laboratory have identified how and when gas pockets form during 3D printing with the help of x-rays—a discovery that could dramatically improve the 3D printing process. The scientists used the extremely bright high-energy x-rays at Argonne’s Advanced Photon Source to take super-fast video and images of a process called Laser Power Bed Fusion, in which lasers melt and fuse material powder together.

The lasers scan over each layer of powder to fuse metal where it is needed and literally create the finished product from the ground up. Defects can form when pockets of gas become trapped into these layers, causing imperfections that could lead to cracks or other breakdowns in the final product.

Until now, manufacturers and researchers did not know much about how the laser drills into the metal, producing cavities called “vapor depressions,” but they assumed that the type of metal powder or strength of laser were to blame. As a result, manufacturers have been using a trial-and error approach with different types of metals and lasers to seek to reduce the defects.

This latest research shows that these vapor depressions exist under nearly all conditions in the process, no matter the laser or metal. Even more important, the research shows how to predict when a small depression will grow into a big and unstable one that can potentially create a defect.

Under perfect conditions, the melt pool shape is shallow and semicircular, called the “conduction mode.” But during the actual printing process, the high-power laser, often moving at a low speed, can change the melt pool shape to something like a keyhole in a warded lock: round and large on top, with a narrow spike at bottom. Such “keyhole mode” melting can potentially lead to defects in the final product.

The research shows that keyholes form when a certain laser power density is reached that is sufficient to boil the metal. This, in turn, reveals the critical importance of the laser focus in the additive manufacturing process, an element that has received scant attention so far, according to the research team.

“The keyhole phenomenon was able to be viewed for the first time with such details because of the scale and specialized capability developed at Argonne,” says Tao Sun, an Argonne physicist and an author on the paper. “The intense high-energy X-ray beam is key to discoveries like this.”

The experiment platform that supports study of additive manufacturing includes a laser apparatus, specialized detectors, and dedicated beamline instruments. In 2016, the Argonne team, together with their research partners, captured the first-ever X-ray video of laser additive manufacturing at micrometer and microsecond scales. That study increased interest in the impact Argonne’s APS could have on manufacturing techniques and challenges.

subscribe to assembly

Related Articles

Researchers Add ‘Shape Memory’ Polymer to 3D Printing

Researchers use Magnetic 3D Printing to Make Microrobots

Metal 3D Printing Accelerates Ship Building

Smart Metal Parts Can Be 3D Printed

Related Products

Kaizen Assembly: Designing, Constructing, and Managing a Lean Assembly Line

Contamination of Electronic Assemblies

Resistance Welding: Fundamentals and Applications, Second Edition

Joining and Assembly of Medical Materials and Devices, 1st Edition

Related Directories

Ryan QC

Industrial Rivet & Fastener Co.

Subscribe For Free!
  • Print & Digital Edition Subscriptions
  • Assembly eNewsletters
  • Online Registration
  • Subscription Customer Service
  • Mobile App

More Videos

Popular Stories

lordstown motors

Electric Truck Manufacturer Buys GM’s Lordstown Assembly Plant

Bobcat manufacturing

Bobcat Announces Manufacturing and Assembly Facility Upgrades

Wearable Device 11-27

Wearable Lets Users Control IoT-Enabled Devices With Brain Waves

Rayovac 11-20

Energizer Moving VT Battery Manufacturing Facility to Former Rayovac Plant

Breaking and Industry News

Airstream Manufacturing Expands With $50 Million Factory

Upcoming Assembly Events and Webinars

Events

January 1, 2030

Webinar Sponsorship Information

For webinar sponsorship information, visit www.bnpevents.com/webinars or email webinars@bnpmedia.com.

View All Submit An Event

Poll

Cloud Computing

Are you using cloud computing at your assembly plant?
View Results Poll Archive

Products

Welding: Principles & Practices

Welding: Principles & Practices

This text introduces students to a solid background in the basic principles and practices of welding.

See More Products
assembly buyers guide

Assembly Magazine

assembly dec 2019

2019 December

The 2019 December Assembly features our Capital Spending Report, plus much more. Check it out today!
View More Create Account
  • More
    • Assembly Plant of the Year
    • Manufacturing Group
    • List Rental
    • Organizations
    • Connect
    • Want More?
    • Polls
    • Privacy Policy
    • Subscribe
    • Survey And Sample

Copyright ©2019. All Rights Reserved BNP Media.

Design, CMS, Hosting & Web Development :: ePublishing